Tutorial 3 (Limits & Continuity)

(You should practise writing proper steps.)

A) Limits

- 1. Evaluate the following limits:
 - (a) $\lim_{x\to 2} (-x^2 + x 2)$ (b) $\lim_{x\to 4} 2(x-3)(x-5)$ (c) $\lim_{x\to 2} \frac{x^2 2}{x-1}$ (d) $\lim_{x\to -1} \frac{2x^2 x 3}{x+1}$
 - (e) $\lim_{x \to 3} \frac{x^2 + x 12}{2x 6}$ (f) $\lim_{x \to -1} \frac{x^3 + 1}{x + 1}$ [Do you know how to factorise $x^3 + 1$?]
 - (g) $\lim_{x \to 3} \frac{\sqrt{x} 1}{x 1}$ (h) $\lim_{x \to 1} \frac{\sqrt{x} 1}{x 1}$
 - (i) $\lim_{x\to 0} \frac{\sqrt{3+x}-\sqrt{3}}{x}$ [The expression $\sqrt{3+x}+\sqrt{3}$ may be useful.]
 - (j) $\lim_{x \to 0} \frac{\frac{1}{2+x} \frac{1}{2}}{x}$ [Simplify the expression first.] (k) $\lim_{x \to 3} \left[\frac{x^2 9}{x 3} \frac{x^2 1}{x + 1} \right]$
 - (1) $\lim_{x \to 0} \frac{\tan x}{x}$ [Hint: $\tan x = \frac{\sin x}{x}$] (m) $\lim_{x \to 2} \frac{|x-1|}{|x-1|}$ (n) $\lim_{x \to 2.5} |x|$
- 2. (a) Given that $\lim_{x\to 0} \frac{x}{\sin x} = L$, what is the value of L?
 - (b) Evaluate the following limits:
 - (i) $\lim_{u \to 0} \frac{\sin u}{u}$ (ii) $\lim_{x \to 0} \frac{\sin 3x}{x}$ (iii) $\lim_{x \to 0} \frac{\sin x^3}{x^3}$
 - (iv) $\lim_{x\to 0} \frac{2x(x+1)}{\sin 3x}$ [The expression $\frac{3x}{\sin 3x}$ may be useful.] (v) $\lim_{x\to 0} x^3 \sin \frac{1}{x^3}$
- 3. (a) Determine $\lim_{x\to 3^+} \lceil x \rceil$ and $\lim_{x\to 3^-} \lceil x \rceil$. Does $\lim_{x\to 3} \lceil x \rceil$ exist? Why?
 - (b) Determine $\lim_{x\to 2^+} \frac{|x-2|}{x-2}$ and $\lim_{x\to 2^-} \frac{|x-2|}{x-2}$. Does $\lim_{x\to 2} \frac{|x-2|}{x-2}$ exist? Why?
- 4. (a) Given that $1 \frac{x^2}{4} \le f(x) \le 1 + \frac{x^2}{2}$ for all $x \ne 0$, find $\lim_{x \to 0} f(x)$.

[Which theorem do you use?]

(b) Prove that $\lim_{x\to 0} x \cos \frac{1}{x} = 0$. [Try to sandwich $x \cos \frac{1}{x}$]

between two appropriate expressions.]

- (c) Given that $3x-5 \le f(x) \le x^2-3x+4$ for $x \ge 0$, find $\lim_{x\to 3} f(x)$
- (d) Find $\lim_{x\to 0} x^4 \sin \frac{1}{x^3}$.

TMA1101 Calculus, T2, 2014/15

5. Determine whether the limit exists by considering the corresponding one-sided limits. Give the value of the limit if it exists.

(a)
$$\lim_{x \to 2} f(x), f(x) = \begin{cases} \frac{x+2}{2}, & x < 2 \\ \frac{12-2x}{3}, & x \ge 2 \end{cases}$$
 (c) $\lim_{x \to 2} f(x), f(x) = \begin{cases} 3-x, & x < 2 \\ 2, & x = 2 \end{cases}$ (b) $\lim_{x \to 2} f(x), f(x) = \begin{cases} \frac{3x-2}{2}, & x < 2 \\ \frac{6}{x} + 1, & x \ge 2 \end{cases}$

For each of the above, is f continuous at 2?

6. Determine the value of each of the following limits if it exists. If it does not exist, explain why.

(a)
$$\lim_{x \to 2} \frac{|x^2 - 4|}{x - 2}$$
 Hint: Use $|x^2 - 4| = \begin{cases} -(?), & \text{if } x < 2 \\ x^2 - 4, & \text{if } x < 2 \end{cases}$ or try another way.

(b)
$$\lim_{x \to 2} \left\lfloor \frac{x+1}{2} \right\rfloor$$
 [What are the values of $\left\lfloor \frac{x+1}{2} \right\rfloor$ for values of x near 2, say for $1 < x < 3$?]

B) **Continuity**

1. Determine whether the following functions are continuous at x = 3.

(a)
$$f(x) = \begin{cases} 2x^2 - 4 & (x > 3) \\ x + 11 & (x \le 3) \end{cases}$$

(b)
$$f(x) = \frac{2x}{3x^2 - 9x}$$

(b)
$$f(x) = \frac{2x}{3x^2 - 9x}$$
(c)
$$f(x) = \begin{cases} 3x - 2 & x < 2\\ \frac{6}{x} + 1 & x \ge 2 \end{cases}$$

2. For each of the functions graphed below, explain why the function is not continuous at x = a.

TMA1101 Calculus, T2, 2014/15

- 3. (a) If you look at the graph of $y = \tan x$, where are the points of discontinuity? Find the discontinuities of $f(x) = \tan(3x - 2)$.
 - (b) Determine the discontinuities, if any, of the following function.

$$f(x) = \begin{cases} 2x+1, & x \le 0\\ 1, & 0 < x \le 1\\ x^2+1, & x > 1 \end{cases}$$

- 4. Evaluate each of the following limits by observing that each expression involved is a composition of continuous functions.
 - (a) $\lim_{x \to \pi} \cos(x + \sin x)$ (b) $\lim_{x \to 2} e^{x^2 1}$
- 5. At what points are the functions continuous?

(a)
$$f(x) = \frac{x+1}{x^2 - 3x + 2}$$

(a)
$$f(x) = \frac{x+1}{x^2 - 3x + 2}$$
 (b) $g(x) = \begin{cases} 3 - x & \text{if } x \le 3 \\ 2x + 1 & \text{if } x > 3 \end{cases}$

- 6. (a) Explain why $g(x) = \begin{cases} 3-x & \text{if } x \le 3 \\ 2x+1 & \text{if } x > 3 \end{cases}$ is a continuous function on the interval
 - (0,3) but not a continuous function on the interval [0,3]
 - (b) Explain why $g(x) = \frac{x}{x-2}$ is not a continuous function on the interval [0,3]
- 7. (a) State the intermediate value theorem (i.e. the full statement including the hypothesis and the conclusion).
 - (b) Show that there is a root of the equation $x \cos x = 0$ in the interval $\left[0, \frac{\pi}{2}\right]$. [Let $f(x) = x - \cos x$. Then apply Intermediate Value Theorem.]
- 8. (a) If $f(x) = x^3 8x + 10$, show that there is a value of c in the interval (0,1) for which $f(c) = \pi$.
 - (b) Show that there is a root of the equation $4x^3 6x^2 + 3x 3 = 0$ in the interval [1,2].

C) Limits involving infinity

1. Show that $\lim_{x\to 0^+} \left(\frac{1}{|x|} - \frac{1}{x}\right)$ exists but $\lim_{x\to 0^-} \left(\frac{1}{|x|} - \frac{1}{x}\right)$ does not.

What can you conclude about $\lim_{x\to 0} \left(\frac{1}{|x|} - \frac{1}{x}\right)$? [Reminder: $|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$]

2. (a) Determine the vertical and/or horizontal asymptote(s) for the graph of each function defined as follows.

[Consider $\lim_{x \to \infty} f(x)$, $\lim_{x \to \infty} f(x)$, $\lim_{x \to \infty} f(x)$ and/or $\lim_{x \to \infty} f(x)$ for appropriate a.]

(i)
$$f(x) = \frac{2x+1}{2x^2-5x+2}$$

(ii)
$$f(x) = \frac{3x^2 - 2x + 4}{2x^2 - 5x + 2}$$
 [Factoring $2x^2 - 5x + 2$ may help.]

(iii)
$$f(x) = \frac{x+3}{\sqrt{x^2 + 2x - 8}}$$

(b) The graph of $f(x) = \frac{4x+8}{x^2-4}$ has a horizontal asymptote. Give the equation of this asymptote.

Show that x = -2 is NOT a vertical asymptote for the graph of $f(x) = \frac{4x + 8}{x^2 - 4}$.

3. For each of the following limits, determine if it exists. If it does not exist, could you write as $\lim_{x\to a} f(x) = \infty$ or $\lim_{x\to a} f(x) = -\infty$. Show steps to justify your answers.

(a)
$$\lim_{x \to +\infty} \frac{2x^3 - 4x}{5x^3 + 2}$$

(b)
$$\lim_{x \to +\infty} \frac{5x^5 - 3}{3x^3 - 2}$$

(a)
$$\lim_{x \to +\infty} \frac{2x^3 - 4x}{5x^3 + 2}$$
 (b) $\lim_{x \to +\infty} \frac{5x^5 - 3}{3x^3 - 2}$ (c) $\lim_{x \to \infty} \left(\frac{8x^2 + 7}{2x^2} - \frac{9x^3 + 27}{3x^3 - 3} \right)$

(d)
$$\lim_{x \to \infty} \left(\sqrt{x(x+2)} - x \right)$$
 (e) $\lim_{x \to 2} \frac{2x+3}{3x^2 - 4x - 4}$ (f) $\lim_{x \to \infty} \frac{2x+3}{3x^2 - 4x - 4}$

(e)
$$\lim_{x\to 2} \frac{2x+3}{3x^2-4x-4}$$

(f)
$$\lim_{x\to\infty} \frac{2x+3}{3x^2-4x-4}$$

$$(g)\lim_{x\to 0}\frac{\cos x}{x^4}$$

(g)
$$\lim_{x\to 0} \frac{\cos x}{x^4}$$
 (h) $\lim_{x\to 0} \frac{\sin x}{x^4}$

(i)
$$\lim_{x\to 0} \frac{x^2+1}{x^4}$$

(i)
$$\lim_{x \to 0} \frac{x^2 + 1}{x^4}$$
 (j) $\lim_{x \to \infty} \frac{x^2 + 1}{x^4}$

(nby, Nov 2015)